A NOVEL CLASS OF NITRILE YLIDE

Ricardo Bossio, Stefano Marcaccini, and Roberto Pepino

C N R, Centro di studio sulla chimica e la struttura dei composti eterociclici e loro applicazioni,
Dipartimento di Chimica Organica "U.Schiff"
Università di Firenze, Via G. Capponi 3, 50121 Firenze, Italy

Abstract: Isothiocarbamoyl chlorides IV on treatment with NEt₃ afforded nitrile ylides V which reacted with dimethyl acetylenedicarboxylate to give 2H-pyrroles VI and with ethyl cyanoformate to give 4H-imidazoles VII.

In a previous paper 1 we reported a novel synthetic route to oxazoles by cyclization of N-alkoxycarbonylmethyl-S-arylisothiocarbamoyl chlorides I in the presence of triethylamine:

In continuation of our studies we decided to investigate the behaviour of some isothiocarbamoyl chlorides, unable to undergo ring-closure reaction, toward triethylamine.

As the isothiocarbamoyl chlorides we chose N-(1-cyanoethyl)-S-arylisothiocarbamoyl chlorides which were easily prepared, in almost quantitative yields by reacting sulfenyl chlorides II with 2-isocyanopropionitrile (III) 2 in methylene chloride at -50 °C:

a R = 4-chloro-2-nitrophenyl

b R = 2-nitrophenyl

c R = 2,4-dinitrophenyl

On treatment of an ethereal solution of IV with triethylamine, triethylamine hydrochloride separated out and a solution containing the 1,3 dipolar species V was obtained:

The presence of the 1,3 dipoles V, a hitherto unknown class of nitrile ylide, was confirmed by performing the reaction in the presence of dimethyl acetylenedicarboxylate: 1,3 dipolar cycloaddition took place giving 2*H*-pyr-roles VI:

Analogously, employing ethyl cyanoformate as the dipolar phile, 4H-imidazoles VII were obtained:

A typical experimental procedure is as follows. Dry triethylamine (1.01 g, 10 mmoles) in Et₂O (10 ml) was added, during 2h, to a well-stirred solution of N-(1-cyanoethyl)-S-(4-chloro-2-nitrophenyl)isothiocarbamoyl chloride (Ia) (3.04 g, 10 mmoles) and dimethyl acetylenedicarboxylate (1.70 g, 12 mmoles) in dry Et₂O (35 ml). The reaction mixture was stirred for an additional hour and then evaporated to dryness. The residue was stirred with a little ethanol and filtered. The collected solid product was recrystallized from ethanol to give dimethyl 2-cyano-2-methyl-5-(4-chloro-2-nitrophenyl)-2H-pyrrole-3,4-dicarboxylate in 80% yield. Pale yellow crystals mp 165-166 °C.

The synthesis of 4H-imidazoles VII was accomplished following the procedure described for 2H-pyrroles VI except that benzene was employed as the solvent and the reaction was performed at 60 °C.

Physical and spectral data of compounds IV, VI and VII are summarized in the following Tables.

Table 1: N-(1-Cyanoethyl)-S-arylisothiocarbamoyl Chlorides IV.

Compound	Mp ^a /solvent	1 _{H-nmr} (δ) ^b	
IVa	70-71 °C/hexane	4.77-4.58(q,1H,CH)	1.56-1.48(d,3H,CH ₃)
IVb	41-42 °C/hexane	4.84-4.62(q,1H,CH)	1.57-1.48(d,3H,CH ₃)
IVc	c	4.88-4.66(q,1H,CH)	1.61-1.53(d,3H,CH ₃)

a) Uncorrected; b) Solvent CDC1 $_3$, TMS as internal reference; c) The crude reaction product was employed for the successive reaction without purification.

Table 2: Dimethyl 5-Arylthio-2-cyano-2-methyl-2H-pyrrole-3,4-dicarboxylate VI.

Compound	$\mathbf{Mp}^{a,b}$	Yield	¹ H-nmr (δ) ^c	$\frac{d}{ms}$
VIa	165-166 °C	80%	3.96(s,6H,OCH ₃ (3)+OCH ₃ (4)) 1.78(s,3H,CH ₃)	409
VIb	104-105 °C	65%	3.92(s,3H,OCH ₃ (3)) 3.88(s,3H,OCH ₃ (4))	375
VIc	144-146 °C	30%	1.70(s,3H,CH ₃) 3.97(s,3H,OCH ₃ (3)) 3.94(s,3H,OCH ₃ (4)) 1.76(s,3H,CH ₃)	420

a) Uncorrected;
 b) Solvent EtOH;
 c) Solvent DMSO-d_c;
 TMS as internal reference

d) 70 eV, $|\mathbf{M}|^{+}$ m/z values

Table 3: Ethyl 2-Arylthio-4-cyano-4-methyl-4H-imidazole-5-carboxylate VII.

Compound	$Mp^{a,b}$	Yield	$\frac{1}{\text{H-nmr}} (\delta)^c$	ms
VIIa	125-126 °C	66%	4.58-4.36(q,2H,CH ₂)	366
			1.75(s,3H,CH ₃ (4))	
			1.55-1.38(t,3H,CH ₃)	
VIIb	137-138 °C	55%	4.54-4.33(q,2H,CH ₂)	332
			1.73(s,3H,CH ₃ (4))	
			1.48-1.38(t,3H,CH ₃)	

a) Uncorrected; b) Solvent EtOH; c) Solvent DMSO-d; TMS as internal reference d) 70 eV, $|\mathbf{M}|^{+}$ m/z values.

REFERENCES

- 1. R. Bossio, S. Marcaccini, and R. Pepino, Heterocycles, in press.
- 2. K. Hantke, U. Schöllkopf, and H.H. Hausberg, Liebigs Ann. Chem., 1975, 1531.

(Received in UK 21 July 1986)